Finite-size corrections and scaling for the dimer model on the checkerboard lattice.
نویسندگان
چکیده
Lattice models are useful for understanding behaviors of interacting complex many-body systems. The lattice dimer model has been proposed to study the adsorption of diatomic molecules on a substrate. Here we analyze the partition function of the dimer model on a 2M×2N checkerboard lattice wrapped on a torus and derive the exact asymptotic expansion of the logarithm of the partition function. We find that the internal energy at the critical point is equal to zero. We also derive the exact finite-size corrections for the free energy, the internal energy, and the specific heat. Using the exact partition function and finite-size corrections for the dimer model on a finite checkerboard lattice, we obtain finite-size scaling functions for the free energy, the internal energy, and the specific heat of the dimer model. We investigate the properties of the specific heat near the critical point and find that the specific-heat pseudocritical point coincides with the critical point of the thermodynamic limit, which means that the specific-heat shift exponent λ is equal to ∞. We have also considered the limit N→∞ for which we obtain the expansion of the free energy for the dimer model on the infinitely long cylinder. From a finite-size analysis we have found that two conformal field theories with the central charges c=1 for the height function description and c=-2 for the construction using a mapping of spanning trees can be used to describe the dimer model on the checkerboard lattice.
منابع مشابه
Exact solution of the dimer model on the generalized finite checkerboard lattice.
We present the exact closed-form expression for the partition function of a dimer model on a generalized finite checkerboard rectangular lattice under periodic boundary conditions. We investigate three different sets of dimer weights, each with different critical behaviors. We then consider different limits for the model on the three lattices. In one limit, the model for each of the three latti...
متن کاملFinite-size corrections and scaling for the triangular lattice dimer model with periodic boundary conditions.
We analyze the partition function of the dimer model on M x N triangular lattice wrapped on the torus obtained by Fendley, Moessner, and Sondhi [Phys. Rev. B 66, 214513, (2002)]. Based on such an expression, we then extend the algorithm of Ivashkevich, Izmailian, and Hu [J. Phys. A 35, 5543 (2002)] to derive the exact asymptotic expansion of the first and second derivatives of the logarithm of ...
متن کاملv 1 1 A pr 1 99 8 Corrections to Finite - Size Scaling in the Lattice N - Vector Model for N = ∞
We compute the corrections to finite-size scaling for the N -vector model on the square lattice in the large-N limit. We find that corrections behave as logL/L2. For tree-level improved hamiltonians corrections behave as 1/L2. In general l-loop improvement is expected to reduce this behaviour to 1/(L2 log L). We show that the finite-size-scaling and the perturbative limit do not commute in the ...
متن کاملLogarithmic conformal field theory and boundary effects in the dimer model.
We study the finite-size corrections of the dimer model on a square lattice with two different boundary conditions: free and periodic. We find that the finite-size corrections depend in a crucial way on the parity of ; we also show that such unusual finite-size behavior can be fully explained in the framework of the logarithmic conformal field theory.
متن کاملNon-Local Finite-Size Effects in the Dimer Model
We study the finite-size corrections of the dimer model on∞×N square lattice with two different boundary conditions: free and periodic. We find that the finite-size corrections depend in a crucial way on the parity of N , and show that, because of certain non-local features present in the model, a change of parity ofN induces a change of boundary condition. Taking a careful account of this, the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E
دوره 94 5-1 شماره
صفحات -
تاریخ انتشار 2016